
CHAPTER 7 

ATOMIC MODELS FOR DIFFUSION 

Macroscopic treatments of diffusion result in continuum equations for the fluxes 
of particles and the evolution of their concentration fields. The continuum models 
involve the diffusivity, D, which is a kinetic factor related to the diffusive motion 
of the particles. In this chapter, the microscopic physics of this motion is treated 
and atomistic models are developed. The displacement of a particular particle can 
be modeled as the result of a series of thermally activated discrete movements (or 
jumps)  between neighboring positions of local minimum energy. The rate at  which 
each jump occurs depends on the vibration rate of the particle in its minimum- 
energy position and the excitation energy required for the jump. The average 
of such displacements over many particles over a period of time is related to the 
macroscopic diffusivity. Analyses of random walks produce relationships between 
individual atomic displacements and macroscopic diffusivity. 

7.1 THERMALLY ACTIVATED ATOMIC JUMPING 

The fundamental process in atomistic diffusion models is the thermally activated 
jump between neighboring sites of local minimum energy. The duration of any jump 
is typically very short compared to the particle’s residence time in a minimum- 
energy site. Therefore, the average jump rate-the basis for any model of atomistic 
diffusive motion-is essentially inversely proportional to the average residence time. 

The residence time depends upon the probability that the local potential en- 
ergy will undergo a fluctuation large enough to enable the particle to surmount the 
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potential-energy barrier that  it will encounter while making a jump. This barrier 
can readily be visualized by considering, as an example. t,he diffusion of intersti- 
tial a t o m  among the interstices of large substitutional host atoms as described in 
Section 3.1.4. In this case, a jumping interstitial atom must squeeze its way past 
the large intervening substitutional atjonis to  make a successful jump between in- 
terstices. This squeezing increases the potential energy in the local region, and a 
potential-energy barrier to  the jump t,herefore exists. Similar barriers exist for t,he 
jumps of particles in other systems. The height of the barrier will depend upon 
the interaction between the jumping particle and its surroundings arid can vary 
depending upon the path of the jumping particle and the posit,ioiis of its neighbors. 
For example, neighboring atoms may cooperatively enlarge the gap through which 
the jumping particle passes. The complexit,y of any analysis is increased by this 
multiplicity of possible activated configurations. However, useful approximations 
of varying accuracy can be obtained. 

There are numerous approaches to  modeling the jump rate.' Below, three pro- 
gressively more realistic models are presented. All three approaches produce the 
same basic result-the jump rate is a product of the vibration frequency in the 
initial stable site and a Boltzmann probability of a sufficient energy fluctuat,ion for 
the jump. 

7.1.1 

The simplest model is composed of identical noniriteracting particles sitting in rect- 
angular potential-energy wells separated by flat potential-energy barriers. The bar- 
riers have widths L A ,  as illustrated in Fig. 7.1. The rate at which the particle1 
traverses a barrier is calculated as a one-particle event that occurs in one dimen- 
sion. The many-bodied aspects are ignored and it is assumed that the migrating 
particle's surroundings-and therefore the potential-energy landscape--is static. 
Furthermore. the system is assumed to be in thermal equilibrium, so that the local 
temperature provides a statistical probability of a particle's kinetic energy fluctua- 
tions. Under this condition, a given particle spends most of its time in the energy 

One-Particle Model with Square Potential-Energy Wells 
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Figure 7.1: Square poterit,ial-eIiergy wells arid an eriergy barrier for a particle jurnpirig 
in one dinierisiori. The iiuniber of particles is proportioiial t,o t lie occupat,ioii probnhilit~y of 
well st,ates along L~~~~  rid activateci states along L ~ .  

'See Glasstone et al.. Wert and Zener. Vineyard, Rice, Flynn, Girifalco. Christian, and Franklin 
for examples [l-81. 
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wells that correspond to low-energy (high-probability) well states. However, fluc- 
tuations produce brief intervals during which a particle is situated atop the energy 
barrier along L A  in high-energy (low-probability) activated states. The jump rate 
is the inverse of the average migration time, the average amount of time between 
an atom’s arrival at one site and its arrival at a neighboring site. The average 
migration time is the sum of two distinct terms: the time an atom waits to reach 
an activated state and the migration time in the activated state. It is assumed that 
the system behaves classically and that any contribution from quantum-mechanical 
tunneling between the energy wells is negligible. Quantum tunneling can become 
important for light particles at low temperatures and is discussed elsewhere [5, 81. 

The average time for a particle in an activated state to cross the activation 
barrier is 

where (v) is the particle’s average velocity along L A  and m is its mass. The ex- 
pression for (u )  is found by determining its average momentum (p) and then using 
(w) = (p)/m. In this classical system, the probability that the particle has momen- 
tum in the forward direction (i.e., with positive values of p) between p and p + dp 
is proportional to exp[-p2/(2mkT)]dp [l]. Therefore, 

In a system of N particles, the total rate at which particles cross the barrier, 
&cross , is 

(7.3) 
- number of particles in an activated state 
- 

Tcross 

Consider a total time T >> rA ,  where r A  is the time that a particle spends in an 
activated state. Then. 

where rwel1 N T is the average duration in a well state. Therefore, for one particle, 
the crossing frequency (i.e., the jump frequency, I?’), is 

or 

The ratio of times spent in a well state and in an activated state is 

T A  2-4 CAe-EA/(bT) 
Twell Zwell Cwell e-Ewe” /(kT) 

- - - - - -  

(7.5) 

(7.6) 

(7.7) 

where Z A  and Zwel1 are the partition functions for the activated and well states.2 

2The partition function plays a central role in statistical mechanics [9]. If the probability of 
finding a system in a state i with energy Ei is proportional to exp[-Ei/(kT)], the partition 
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If d(z) is the potential energy function illustrated in Fig. 7.1, the classical limit 
is 

Therefore, 

where Em = EA - Ewe'' (i.e., the height of the barrier) is termed the activa- 
tion energy for migration of the particle. The bracketed term that multiplies the 
Boltzmann-Arrhenius term exp[-Em/(kT)] has dimensions (time)-' and repre- 
sents the number of attempts a t  the barrier per unit time-the average attempt 
frequency. The Boltzmann-Arrhenius exponential term is the activation success 
probability for each attempt. As demonstrated in less simple models below, this 
simple result-that there is a characteristic attempt frequency multiplied by a 
Boltzmann-Arrhenius factor containing the activation energy-is quite robust. 

7.1.2 

An improved approximation to the potential-energy landscape can be obtained by 
introducing parabolic wells and a smooth barrier as in Fig. 7.2.3 This model is 
more realistic, as particles that are displaced small distances from their average 
positions of minimum energy in a solid will generally experience restoring forces 
that increase linearly with the displacements. This leads to a potential energy that 
increases as the square of the particle displacement, which corresponds to a static 
(i.e., non-many-bodied) harmonic model for a solid [9]. The energies of the states 
of the particles are approximately 

One-Particle Model with Parabolic Potential-Energy Wells 

In Fig. 7 .2 ,  the well states are located in the region denoted by Lwei' near the 
minima. The particles spend the remainder of their time at the approximately 
flat region denoted by LA,  where the changes in average particle velocity are small. 
Particles at  other positions experience significant forces from -V+(z) and therefore 
tend to accelerate, resulting in low occupation probabilities for those positions. The 
analysis method is the same as that for the rectangular-well model, and Eqs. 7.6 
and 7.7 again hold. Using the harmonic potential, the ratio of partition functions 

function is related to the normalization factor for the probabilities 2 = Estates exp[-E,/(kT)] 

number of states of identical energy E3 . Because ZA is proportional to a sum of probabilities, it 
is proportional to the total probability of finding a particle in the activated state and therefore 
the average time in that state. 
3By illustrating the potential-energy landscape in one dimension in Fig. 7.2,  it appears that 
the activated state is one of maximum energy. The single dimension represents the most likely 
trajectory between the minimum states which requires the least energy, so the activation energy is 
that  of the trajectory's saddle point-the minimum of all the maximum energies of the trajectories 
between two minima (see Fig. 7 . 3 ) .  

- - Eenergles 3 W E , )  exp[-J%/(kT)l = Cenergies 3 exp(%/k) exp[-J%/(kT)I, where WE,) is the 
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Figure 7.2: Parabolic potential-energy well for one-dimensional particle jumps. Unlike 
the square potential energy function in Fig. 7.1. the energy barrier is no longer perfectly flat. 

(Eqs. 7.6 and 7.7) becomes 

and because states far from the well minimum do not contribute significantly, the 
limits of integration can be approximated with 

and integrated to  give 

where 

(7.13) 

(7.14) 

is the characteristic attempt frequency. Again, the activation energy is the height 
of the energy barrier and the jump rate is given by an attempt frequency niultiplied 
by a Boltzmann-Arrhenius factor of the form exp[-Em/(kT)]. The frequency. u. 
is that  of a simple harmonic oscillator of mass, m, with a restoring-force constant 
given by /3 (demonstrated in Exercise 7.1). 

7.1.3 Many-Body Model 

The two simple single-body models can be improved by including many-body as- 
pects and by allowing the jumping particle to differ from the remaining particles. 
A treatment similar to Vineyard's is developed [3]. The N-body system consists 
of N - 1 identical particles of mass m and a single migrating particle of mass m J .  
The state of such a system of N interacting particles can be defined by 3 N  spatial 
coordinates, q L ,  and 3N momenta, p , ,  and can then be represented by a point in 
a 6N-dimensional phase space with coordinates (41,  q2, . . . . q 3 N .  P I .  p2 .  . . . . p 3 ~ )  [9]. 
Furthermore, the total energy of such a system can be expressed as the sum of its 



150 CHAPTER 7 ATOMIC MODELS FOR DIFFUSION 

kinetic energy (a function of the 3 N  momenta) and its potential energy (a function 
of the 3 N  spatial coordinates). 

Assuming that there are numerous sites in the system that the jumping par- 
ticle can occupy while maintaining a stable system structure, the rate at which 
this particle jumps from one stable site to another can be determined. Figure 7.3a 
depicts how the total potential energy of the system, o = + ( q ~ .  q 2  
as t'he jumping particle occupies positions throughout the syste 
sites of local minimum energy. Because it is impossible to  make such a plot in 
three dimensions, the many displacements of particles in the system that acconi- 
pany the displacement of the jumping particle are suggested by the added multiple 
axes. Point P represents the situation of the jumping particle in a stable site while 
point Q represents the corresponding situation when the jumping particle is in a 
neighboring stable site. In both cases, the system is stable because it is at a local 
potential-energy minimum, as indicated by the two minima in the hypersurface 
shown in the 3N-dimensional space of Fig. 7.3. In Fig. 7.3b, hypersurfaces of con- 
stant potential energy are a function of the 3 N  coordinates indicated in Fig. 7.3a. 
[These hypersurfaces are of dimensionality 3 N  - 1 because they are defined by the 
level sets of 4 = + ( q l , q 2 ,  , q 3 ~ ) ,  so that 3 N  - 1 coordinates are independent.] 
There are many choices for a particle trajectory between P and Q, but the trajec- 
tories that cross the saddle point (located at  the point P A )  require the smallest 
energy fluctuation and are the most probable. Therefore, the saddle point ener- 
gies in the potential-energy landscape determine the transition probabilities. The 
saddles are present because each minimum is surrounded by neighboring maxima. 
Neighboring niininia pairs have at  least one connecting path that has an associated 
saddle energy; the path between P and Q in Fig. 7.3 passes through the saddle 
point PA.  The force on a particle exactly at PA is zero, but the configuration is 
an unstable equilibrium. A unique hypersurface, S A ,  passes through P A  and is 

Figure 7.3: In a syst,eni with 3N spatial coordinates. t,he potential-energy landscape 
consists of minima for each of the stable at,omic sites. such as P and Q. The pot,ential- 
energy landscape surface (a is the surface and b shows its isopot,entials) represents such a 
landscape. but only for t,wo spatial coordinates. The surface is impossible to  illustrate as a 
funct,ion of all coordinates 41. q 2 :  . . . , q 3 ~ .  The migrating atom traverses t,he region between 
P and Q via the saddle point P A .  During migration the landscape chaiiges in response to 
the geometrical coiifiguratiori of the activat,ed state. 
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perpendicular to the contours of constant 4. S A  constitutes an energy ridge and is 
analogous to a “continental divide” separating the region associated with P from 
the region associated with Q. 

In an equilibrium system, a migrating particle spends most of its time vibrating 
with small amplitude about low-energy states such as P and Q. The crossing time is 
very short compared to  the equilibrium duration, but as the migrating atom crosses, 
it slows near the saddle point. For the crossing interval depicted in Fig. 7 .3 ,  most 
of the active migration time is spent near saddle points such as PA in a volume of 
the hyperspace centered on the saddle point of width L A .  Considering the states 
in the activated volume and the states near the minima, Eqs. 7.6 and 7.7 can be 
applied to model the jump rate, I?, but the analysis must be modified if the system 
is a t  constant pressure instead of constant volume. The jump rate for a system at 
constant temperature and pressure is 

(7.15) 

where Z p  is the fixed-pressure partition function, Z is the fixed-volume partition 
function, and V A  and Vwel1 are the system volumes in the activated and well states. 

Using Ui = p:/2mi + &(x) in the classical limit [the number of energetically 
degenerate states = (dp  dq ) /h ]  and integrating the momentum terms for Z yields 

To find an expression for the potential energy of the vibrating system in the well 
state at P, the harmonic approximation is used and $(3 is expanded about P, so 
the potential-energy surface near P has the form 

where i and j sum over the 3N displacements of the J atom and the N - 1 other 
atoms, q; is the average coordinate of the ith vibrating atom, and $O is the po- 
tential energy per atom when all atoms are located in their average positions. The 
elements of the matrix of second derivatives are the linearized spring constants 
for each atom site pair and correspond to the quantity p in Eq. 7.10, which was 
employed in the static harmonic model. Typically, only the near neighbors have 
nonnegligible entries, the number of which depends on the interatomic potential 
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length scale. The matrix of second derivatives is real and symmetric and therefore 
has real eigenvalues, all of which are positive in the stable state. If the 6qi are 
transformed to its diagonalized coordinate eigensystem 6qi, 

(7.18) 

where mi and wi are the effective masses and characteristic angular frequencies of 
the three vibrational modes of each harmonic mode and i now runs over the 3N 
modes of the J atom and the N - 1 other atoms. The modes are decoupled in 
the eigensystem and this transformation exists for any interatomic potential. If the 
interactions are short-range, the matrix will be sparse and the effective masses and 
characteristic frequencies will be nearly the same in the eigensystem (qi) and the 
lattice system (q i ) .  

In Eq. 7.16,$ can be approximated using Eq. 7.18; the integral's value is domi- 
nated by 6qi x 0, and therefore its limits can be taken to be km,  even though the 
parabolic approximation is valid only near equilibrium, 

= e  - N $ ' / ( k T )  /F/F. , . /? 
- - e - N $ o / ( k T )  ( 2 T k T ) B  (z) 

m u l  m 2 w 2  ~ ~ N W S N  

3(N--1) 

~ J W J  m w 2  
(7.19) 

where w is the same for all masses except the migrating atom. If the masses and 
characteristic frequencies differ, a product would appear above for each unique 
effective mass and characteristic frequency. 

When the jumping atom is located along LA,  where the potential-energy hyper- 
surface has principal curvatures of opposite sign, there is one negative eigenvalue 
corresponding to the unstable direction along the path between P and Q and 

where i iterates over all N atoms and j iterates over all but the J atom. 
It is reasonable to assume that only a relatively small number of atoms sur- 

rounding the jumping atom are affected when the system goes from the well state 
to the activated state. Let this number be N A .  Also, approximate the potential 
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energy of the jumping atom along L A  at the saddle point by a parabola in a single 
variable, 77.~1. Let the approximating parabola have its maximum 4f at 6 7 5 1  = 0 
and decrease by a factor 1 - E at 6 7 ~ 1  = f L A / 2 :  

(7.21) 

- 3 N A  3 ( N - N A - 1 )  

where i iterates over all N A  affected atoms, j iterates over the 3 N A  modes of the 
affected atoms, and k iterates over all modes of the ( N  - N A  - 1) nonaffected atoms. 
Equation 7.21 can be integrated with the same approximation employed to obtain 
Eq. 7.19. To lowest order in L A  and E ,  

(7.22) 

where i iterates over all N A  affected atoms and 1 iterates over the modes of the 
affected atoms and it is assumed that w f 2  = wf3.  Therefore, 

2 r k T  
- = L  ZA A e -[$$+C,": +f+(N-NA-l)+o]/(kT)e-N+O/(kT) m J ( w ? ) 2  
Zwell 

(7.23) 
and 

3 N A  
r' = %e-[+$+Ez{ 27r + f - ( N A + l ) + a + P ( V A - V w e ' '  (2)' (n e= 1 2) (7.24) 

The final expression for the jump rate is then 

r' = y e - G " / ( k T )  = y e S m / k e - H m / ( k T )  = ue-PVm/(kT)eS"/k,-U'/(kT) (7.25) 
where 

(7.26) 

3 k N A ( A w )  3 N A  

W 
($)I N 2 k ( w f  W J  - ' " J )  + 
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and ( A w )  is the average difference between the activated and stable frequencies, 

The interpretation of the jump rate for this multibody harmonic model is the 
same as for the simpler models. Equation 7.25 is the product of an attempt fre- 
quency and a Boltzmann-Arrhenius exponential factor containing a migration ac- 
tivation energy. This result will be used throughout the remainder of this book. 
If none of the migrating atom’s neighbors are affected in Eq. 7.25, the activation 
energy is simply the difference between the migrating atom’s energy in the acti- 
vated and well states, and the entropy is proportional to the difference between the 
migrating atom’s frequencies in the activated and well states. 

wf - w .  

7.2 DIFFUSION AS A SERIES OF DISCRETE JUMPS 

In general, a particle migrates in a material by a series of thermally activated jumps 
between positions of local energy minima. Macroscopic diffusion is the result of all 
the migrations executed by a large ensemble of particles. The spread of the ensemble 
due to these migrations connects the macroscopic diffusivity to the microscopic 
particle jumping. 

If a particle jumps with average frequency r in a sequence of displacements r‘, 
(6 gives the magnitude and direction of the ith jump), then after a period of time, 
7 ,  the particle will execute N,  = individual jumps.4 The position relative to its 
starting point is the sum of the individual displacements, 

i=l i=l  

The random walk process can be characterized by the distribution of total dis- 
placements for either a large set of noninteracting walkers or for repeated trials of 
an isolated walker. The average displacement is a vector (Z(N,))and the mean- 
square displacement (Z(N,) . Z(N,))  = ( R 2 ( N T ) )  is a scalar that characterizes the 
spread or difluseness of the distribution of total displacements about its average. 

The square displacement for a given sequence of random steps is 

4r represents the average total jump rate during the sequence, which generally consists of jumps 
of different lengths and directions. This contrasts with r’, which represents the jump rate between 
two specified sites. 



7.2: DIFFUSION AS A SERIES OF DISCRETE JUMPS 155 

This sum consists of N,  x N,  products that can be collected into diagonal 
and off-diagonal (6 Fj = Fj ..i) parts, 

* Fi 

N ,  N,-1 N,-j 
(7.29) 

i=l j=1 i=l 

The 6 . 6+j can be expressed as products of the jump distances and the cosine of the 
angle between the jump-vector directions, O i , i + j  (i.e., ?'i . Fi+j = lFi l \ f i+j \  cos &,i+j). 
The mean-square jump distance is 

(7.30) 

Averaging over a large number of independent walkers or trials for a single walker, 

(7.31) ) 
N,-l N,-j 

w2 (w) = ~ , ( r ~ )  + 2 c C IF~ I IF~+~I  cosei,i+j ( j=1 i=l 

Equation 7.31 is general. No assumptions have been made about the randomness 
of the displacements, the lengths of the various displacements, the allowed values 
of O i , i + j ,  or the number of dimensions in which the random walk is occurring. 

7.2.1 Relation of Diffusivity to the Mean-Square Particle Displacement 

A relationship between the macroscopic diffusivity, D,  of a component i and the 
mean-square displacement, (R2 ( N T ) ) ,  can be obtained from the behavior of ci(z, t )  
as it evolves from an initial point source at the origin. Using the solution for 
diffusion from an instantaneous point source in three dimensions in Table 5.1, the 
distribution of particles after a time T will be given by 

The second moment of the distribution in Eq. 7.32, 

Jr r2c(r, T )  47rr2 dr 
(R2 = c(r ,  T )  47rr2 dr 

(7.32) 

(7.33) 

gives the mean-square displacement away from the original point source. Using 
Eq. 7.32 and the relationship 

(7.34) 

in Eq. 7.33, the mean-square displacement for isotropic three-dimensional diffusion 
is related to the diffusivity by 

(R2 ( T ) )  = ~ D T  (7.35) 
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For diffusion in one and two dimensions, similar calculations show that (R2 ( r ) )  = 
2 D r  and 4 D r ,  respectively. An analogous expression for (R2  ( r ) )  when the diffu- 
sivity is anisotropic is explored in Exercise 7.4. 

Equation 7.35 is a fundamental relationship between the diffusivity and the 
mean-square displacement of a particle diffusing for a time 7. Because diffusion 
processes in condensed matter are comprised of a sequence of jumps, the mean- 
square displacement in Eq. 7.31 should be equivalent to Eq. 7.35. This equivalence, 
as demonstrated below, results in relations between macroscopic and microscopic 
diffusion parameters. 

7.2.2 Diffusion and Random Walks 

If a particle moves by a series of displacements, each of which is independent of the 
one preceding it, the particle moves by a random walk. Random walks can involve 
displacements of fixed or varying length and direction. The theory of random 
walks provides distributions of the positions assumed by particles; such distributions 
can be compared directly to those predicted to result from macroscopic diffusion. 
Furthermore, the results from random walks provide a basis for understanding non- 
random diffusive processes. 

The distribution of positions is easily formulated for a random walker on a one- 
dimensional lattice and illustrates important aspects of all random walks. Such a 
distribution can be compared to the solution for macroscopic diffusion in Table 5.1. 
Extensions to two and three dimensions are not difficult. The particles are assumed 
to  migrate independently. A given particle starts at the origin and jumps either 
forward (along +z) with probability p~ or backward (along -z) with probability 
p ~ ,  where 0 < p~ < 1 and p~ + p~ = 1. Suppose that each displacement is of 
length one, then after N, >> 1 displacements it is possible that the particle will 
end up at -N,, -N, + 1, . . . - 1,  0 ,  1, . . . N, - 1, N,. It is highly unlikely that 
the particle will make all positive jumps to reach site N, or all negative jumps to 
reach -N,. If p~ = p~ = 1 / 2 ,  then, on average, the particle will be located at 
the origin because the equally probable positive and negative displacements negate 
each other. To find the probability that a particle occupies a position n after N, 
jumps, let NR be the number of positive displacements and NL be the number of 
negative displacements, 

NR - N L  = n (7.36) 
NR + N L  = N, 

The number, R(n, N,), of different ways (trajectories, sequences, etc.) the walker 

(7.37) 

can get to  site n from the origin is given by the binomial coefficient 

N ,  ! 
[ (N ,  + n ) / 2 ] !  [ (N ,  - n ) / 2 ] !  

- - N,! n(n,  N,) = ~ 

NR! N L !  
Therefore, the probability of getting to site n after N, jumps is 

(7.38) 

(7.39) 

If the probability of jumping right, p ~ ,  is equal to the probability of jumping left, 
P L  1 

(7.40) 
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Using Stirling's formula, 
Q! = m Q Q e - &  

and taking the limit n /N,  << 1 yields 

(7.41) 

Equation 7.42 shows that the distribution of a point source in one dimension spreads 
as a Gaussian. 

Letting R = n(r2) l I2 ,  the probability distribution for the displacement R is 

The probability distribution must be normalized, so that 

00 

p(R, 7 )  dR = 1 

Therefore, the probability distribution becomes 

(7.43) 

(7.44) 

(7.45) 

which is of the same form as the macroscopic solution for one-dimensional diffusion 
from a point source in Table 5.1. 

The first and second moments of Eq. 7.45 are readily evaluated: 

and 
00 

(R2)  = p(R,  N,)R2 dR = N , ( r 2 )  

(7.46) 

(7.47) 
J--03 

Equation 7.46 demonstrates that if each jump of a walk occurs randomly (i.e., 
is uncorrelated), the average displacement is zero and the center of mass of a large 
number of individual random jumpers is not displaced. Equation 7.47 gives the 
mean-square displacement of a random walk, N T ( r 2 ) .  Although Eqs. 7.46 and 7.47 
were derived here for one-dimensional random walks, both are valid for two- and 
three-dimensional random walks. 

The probability distribution of a random walk shows that the mean-square dis- 
placement after N, jumps is ( R 2 )  = NT(r2 )  = I '7 ( r2)  (Eq. 7.47). Comparison of the 
probability distribution (Eq. 7.45) to the point-source solution for one-dimensional 
diffusion from a point source (Table 5.1) indicates that 

(7.48) 

Equation 7.48 relates the macroscopic diffusivity and microscopic jump parameters 
for uncorrelated diffusion in one dimension. 
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7.2.3 Diffusion with Correlated Jumps 

The calculated root-mean-square displacement for a general sequence of jumps has 
two terms in Eq. 7.31. The first term, N,(r2), corresponds to an ideal random 
walk (see Eq. 7.47) and the second term arises from possible correlation effects 
when successive jumps do not occur completely at random. 

For walks with  correlation^,^ a correlation factor, f ,  can be defined 

so that Eq. 7.31 becomes 
(R2) = N,(r2)f 

(7.49) 

(7.50) 

For a random walk, f = 1 because the double sum in Eq. 7.49 is zero and 
Eq. 7.50 reduces to the form of Eq. 7.47. In principle, f can have a wide range of 
values corresponding to physical processes relating to specific diffusion mechanisms. 
This is readily apparent in extreme cases of perfectly correlated one-dimensional 
diffusion on a lattice via nearest-neighbor jumps. When each jump is identical to 
its predecessor, Eq. 7.49 shows that the correlation factor f equals N7.6 Another 
extreme is the case off = 0, which occurs if each individual jump is exactly opposite 
the previous jump. However, there are many real diffusion processes that are nearly 
ideal random walks and have values of f x 1, which are described in more detail in 
Chapter 8. 

The relationship between the macroscopic isotropic diffusivity, D, and micro- 
scopic jump processes can be evaluated in three dimensions. The equivalence of 
Eqs. 7.31 and 7.35 means that 

\ j=1 i = l  I 

Substitution of Eq. 7.49 into Eq. 7.51 yields the relation between the macroscopic 
isotropic diffusivity and microscopic parameters 

(7.52) 

Equation 7.52 is of central importance for atomistic models for the macroscopic 
diffusivity in three dimensions (see Chapter 8). For isotropic diffusion in a system 
of dimensionality, d ,  the generalized form of Eq. 7.52 is 

(7.53) 

Equations 7.52 and 7.53 reduce to D for random-walking particles (i.e., Eq. 7.48) 
where there are no correlations and f = 1. 

Values of f for several diffusion mechanisms are discussed in Section 8.2.1. 

5Correlated jumps are discussed in Chapter 8. 
6There are (N: - N T ) / 2  cosine terms in the double sum and all are equal to unity. 
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EXERCISES 

7.1 Prove that the pre-exponential frequency factor given by Eq. 7.14 is indeed 
the frequency of a linear oscillator of mass, m, and force constant, p. 
Solution. The equation o f  motion o f  a linear oscillator is 

d2x 
mdt2 F ( x )  = -px ( t )  = (7.54) 

where z ( t )  is the displacement o f  the mass from the position where the restoring force, 
F, is zero. The solution of Eq. 7.54 is of the form x(t) = Asin(wt) where A = constant. 
Substitution of z ( t )  in Eq. 7.54 shows that 

w = 27ru = (7.55) 

7.2 The quantity V”, given by Eq. 7 . 2 6 ,  is the difference between the volume of 
the system in an activated state and a well state. This volume difference is 
generally termed the activation volume for migration and is a positive quan- 
tity because of the atomic squeezing and resulting expansion of the system 
that occurs in the activated state. The activation volume can be measured 
experimentally by measuring the pressure dependence of the jump frequency, 
I”. Find an expression for the pressure dependence of I” and describe how it 
can be used to determine Vm.  
Solution. Use Eq. 7.25 for I?’ and differentiate r’ with respect t o  pressure, so that 

d In r’ d l n v  
(7.56) 
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Using the standard thermodynamic relation [ ~ G / B P ] T  = V and realizing that the 
pressure dependence o f  l n v  will be relatively very small, we may write t o  a good ap- 
proximation 

(7.57) 

If a plot of l n r '  vs. P is now constructed using the experimental data, V" can be 
determined from its slope. 

7.3 Consider small interstitial atoms jumping by the interstitial mechanism in 
b.c.c. Fe with the diffusivity D for a time T .  

(a) What is the most likely expected total displacement after a large number 

(b) What is the standard deviation of the total displacement? 

Solution. 

of diffusional jumps? 

(a) The expected total displacement will be zero because there is no correlation be- 
tween successive jumps-after a jump the interstitial loses its memory of its jump 
and makes its next jump randomly into any one o f  its nearest-neighbor sites. 

(b) The distribution of displacements will be Gaussian (Eq. 7.32) and the standard 
deviation will be the root-mean-square displacement given by Eq. 7.35 as m. 

7.4 Suppose the random walking of a diffusant in a primitive orthorhombic crystal 
where the particle makes N1 jumps of length a1 along the XI axis, NZ jumps 
of length a2 along the xz axis, and N3 jumps of length a3 along the 2 3  

axis. The three axes are orthogonal and aligned along the crystal axes of the 
orthorhombic unit cell and the diffusivity tensor in this axis system is 

Dll 0 0 .=[ : Dozz 4 (7.58) 

(a) Find an expression for the mean-square displacement in terms of the 
numbers of jumps and jump distances. 

(b) Find another expression for the mean-square displacement in terms of the 
three diffusivities in the diffusivity tensor and the diffusion time. Your 
answer should be analogous to Eq. 7.35 ,  which holds for the isotropic 
case. 

Solution. 

(a) Using Eqs. 7.30 and 7.31, 

N 

(R2) = c r', . r', = Nla: + N2a; + N3ai (7.59) 
i=l 

(b) The diffusion equation will have the form o f  Eq. 4.61. By using the method of 
scaling described in Section 4.5 (based on the scaling relationships in Eq. 4.64), 
the solution can be written 

A 
c ( a , m , ~ , t )  = -exp d 
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where A = constant. The mean-square displacement is then 

S;;OS,"S;;"c(zi,22,23,t)~~d5id~2d23 (R2) = 
~,oo~o~~o~c(zl,z2,z3,t)dzl~~2~~3 

L -2L -L J," J," J," e - 4 D i i t  e 4D22t e 4 D 3 3 t  (zf + zg + z:) dzl dz2dz3 
- - 

SoooSoooS,"C(zl1z2,X3,t)dzldz2dz3 
(7.61) 

Equation 7.61 can be factored into standard definite integrals and the result is 

(R2) = 2D11t + 2022t + 2D33t (7.62) 

Comparison of Eqs. 7.59 and 7.62 shows that the mean-square displacement con- 
sists of three terms, each of which is the mean-square displacement that would be 
achieved in one dimension along one of the three coordinate directions. 

7.5 Suppose a random walk occurs on a primitive cubic lattice and successive 
jumps are uncorrelated. Show explicitly that f = 1 in Eq. 7.49. Base your 
argument on a detailed consideration of the values that the cosOi,i+j terms 
assume. 
Solution. Because all jumps are o f  the same length, 

(7.63) 
2 

= 1 + - (cos 01,2 + cos 01,3 . . . + cos e2,3 + cos e2,4 ' ' + cos eN,-l,NT) 
NT 

and thus, 

2 
NT f =  I +  -[(cosel,2) + (  cosel,3)+...+(cose2,3)...+(COSeN,-1,NT)1 (7.64) 

Any jump can be one of the six vectors: [aOO], [TiOO], [OaO], [OZO], [OOa], and [OOTi]. Each 
occurs with equal probability. For each pair o f  jump vectors, i and i+j, the six possible 
values of cosQz,a+3 are 1, - 1 , O ,  O , O ,  and 0, and these occur with equal probability. For a 
large number o f  trajectories, each mean value in Eq. 7.64 is zero and therefore f = 1. 

7.6 For the diffusion of vacancies on a face-centered cubic (f.c.c.) lattice with 
lattice constant a, let the probability of first- and second-nearest-neighbor 
jumps be p and 1 - p ,  respectively. At what value of p will the contributions 
to diffusion of first- and second-nearest-neighbor jumps be the same? 
Solution. There is no correlation and, using Eq. 7.29, 

N -  

(7.65) 

The number of first nearest-neighbor jumps is NTp and the number of second nearest- 
neighbor jumps is N T ( l  - p ) .  Therefore, 

(7.66) a2 (R2) = N T p ~  + NT(1 -p)a2 

They make equal contributions when NTpa2/2 = N T ( l  -p)a2 or p = 2/3. 


